domingo, 25 de marzo de 2007

DEL DÍNAMO AL CHIP

¿QUE ES UN DÍNAMO?
Un dinamo (o generador eléctrico) es un aparato que transforma la energía de movimiento en una corriente eléctrica.
El concepto se debe a Michael Faraday (1791-1867). Hijo de un pobre herrero, Faraday fue aprendiz de un encuadernador y se instruyó el mismo leyendo los libros que le traían para encuadernar. Se convirtió en el mayor científico británico, famoso por sus brillantes intuiciones y por sus populares discursos. Faraday descubrió que moviendo un imán cerca de un circuito eléctrico cerrado, o cambiando el campo magnético que pasa a su través, era posible "inducir" una corriente eléctrica que fluyera dentro de él. Esa "inducción electromagnética " quedó como principio de los generadores eléctricos, transformadores y muchos otros aparatos.
Faraday mostró que otra forma de inducir la corriente era moviendo el conductor eléctrico mientras la fuente magnética permanecía estacionaria. Este fue el principio de la dinamo de disco, que presentaba un disco conductor girando dentro de un campo magnético (ver el dibujo) movido mediante una correa y una polea en la izquierda. El circuito eléctrico se completaba con hilos estacionarios que tocan el disco en su borde y en su eje, como se muestra en la parte derecha del dibujo. No era un diseño muy práctico de la dinamo (a menos que buscásemos generar enormes corrientes a muy bajo voltaje), pero en el universo a gran escala, la mayoría de las corrientes son producidas, aparentemente, mediante movimientos semejantes.
El conductor de la electricidad en movimiento de Faraday era sólido (p.e. un disco de cobre), pero un fluido en circulación también puede crear tales corrientes. Faraday era consciente de la posibilidad de tales "dinamos fluidas", y en consecuencia, intentó medir la corriente eléctrica creada por el flujo del río Támesis de Londres a través del flujo magnético terrestre. Estiró un hilo a través del puente de Waterloo (dibujo), sumergiendo sus extremos dentro del río e intentó medir el flujo de electricidad inducida (linea curva de pequeñas flechas). Pequeños voltajes debidos a procesos químicos le impidieron observar el efecto, pero la idea era acertada. Faraday incluso especuló (incorrectamente) que el flujo de la Corriente del Golfo en el Océano Atlántico estaba conectado de algún modo con la alta atmósfera, suministrando allí una descarga eléctrica que (bajo su punto de vista) era la aurora polar.
Para ver unos raros ejemplos de su proceso de la dinamo, vaya a los sitios web sobre la dinamo que implica a la luna de Júpiter Io y sobre el experimento de la atadura al espacio sobre la Lanzadera Espacial. La dinamo de disco de Faraday necesita un campo magnético para producir una corriente eléctrica. ¿Es posible que la corriente generada produzca también el campo magnético que necesita el proceso de la dinamo? En resumidas cuentas esto es lo que propuso Larmor que ocurría en las manchas solares.
A primera vista esto parece una proposición del tipo "el huevo o la gallina": para producir una gallina se necesita un huevo, pero para producir un huevo se necesita una gallina, luego ¿quién fue primero? Igualmente aquí, para producir una corriente se necesita un campo magnético, pero para producir un campo magnético se necesita una corriente. Luego, ¿quién fue el primero? Realmente, siempre están presentes débiles campos magnéticos y se podrán ampliar gradualmente por el proceso, por lo que no plantean obstáculos.
EL MUNDO DEL CHIP:
Un circuito integrado (CI) es una pastilla o chip muy delgado en el que se encuentran miles o millones de dispositivos electrónicos interconectados, principalmente diodos y transistores, y también componentes pasivos como resistencia o capacitores. Su área puede ser de un cm2 o incluso inferior. Algunos de los circuitos integrados más avanzados son los microprocesadores que controlan múltiples artefactos: desde computadoras hasta electrodomésticos, pasando por los teléfonos móviles. Otra familia importante de circuitos integrados la constituyen las memorias digitales.
El transistor actúa como un switch. Este puede encenderse electrónicamente o apagarse, o también puede amplificar corriente. Es utilizado por ejemplo en computadoras para almacenar la información o en el amplificadores de un estéreo para hacer la señal del sonido más fuerte.
Las resistencias limitan el flujo de electricidad y nos dan la posibilidad de controlar la cantidad de corriente que es permitida para fluir, las resistencias son utilizadas, entre otras cosas, para controlar el volumen en una televisión o en una radio.
Los capacitores almacenan electricidad y la liberan en un rápido impulso, como en las cámaras fotográficas con una pequeña batería se puede provocar un fuerte flash para iluminar toda la habitación por un instante.
Los diodos detienen la electricidad bajo alguna condición, y le permiten el paso tan solo cuando esta condición cambia. Esto es utilizado por ejemplo, en las foto celdas donde un haz de luz se corta y activa el diodo para detener el flujo a través de él.
Estos componentes son como los bloques para armar en un circuito integrado, dependiendo de cómo son colocados los componentes se puede obtener desde una simple alarma hasta un complejo microprocesador de una computadora.
El primer CI fue desarrollado en 1958 por el ingeniero Jack Kilby justo meses después de haber sido contratado por la firma Texas Instruments. Se trataba de un dispositivo de germanio que integraba seis transistores en una misma base semiconductora para formar un oscilador de rotación de fase.En el año 2000 Kilby fue galardonado con el Premio Nobel de Física por la contribución de su invento al desarrollo de la tecnología de la información.
Atendiendo al nivel de integración - número de componentes - los circuitos integrados se clasifican en:
SSI (Small Scale Integration) pequeño nivel: inferior a 12
MSI (Medium Scale Integration) medio: 12 a 99
LSI (Large Scale Integration) grande : 100 a 9999
VLSI (Very Large Scale Integration) muy grande : 10 000 a 99 999
ULSI (Ultra Large Scale Integration) ultra grande : igual o superior a 100 000
En cuanto a las funciones integradas, los circuitos se clasifican en dos grandes grupos:
Circuitos integrados analógicos.
Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta dispositivos completos como amplificadores, osciladores o incluso receptores de radio completos.
Circuitos integrados digitales.
Pueden ser desde básicas puertas lógicas (Y, O, NO) hasta los más complicados microprocesadores.
Éstos son diseñados y fabricados para cumplir una función específica dentro de un sistema. En general, la fabricación de los CI es compleja ya que tienen una alta integración de componentes en un espacio muy reducido de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto los antiguos circuitos, además de un montaje más rápido.
Introducción== La historia de los circuitos integrados podría explicar un poco por que nuestro mundo esta lleno de circuitos integrados, podemos encontrar muchos de ellos en computadoras. Por ejemplo, la mayoría de las personas ha escuchado probablemente de los microprocesadores. El microprocesador es un circuito integrado que procesa toda la información en la computadora, este mantiene un registro de las teclas que se han presionadas y de si el mouse ha sido movido, cuenta los números y corre los programas, juegos y el sistema operativo. Los circuitos integrados también pueden ser encontrados en todos los aparatos electrónicos modernos como lo son los automóvil, televisores, reproductores de cd’s, reproductores de MP3, teléfonos celulares, etc. Los circuitos integrados fueron posibles gracias a descubrimientos experimentales que demostraron que los semiconductores pueden realizar las funciones de los tubos de vacío. La integración de grandes cantidades de diminutos transistores en pequeños chips fue un enorme avance sobre la ensamblaje manual de los tubos de vacío (válvulas) y circuitos utilizando componentes discretos. La capacidad de producción masiva de circuitos integrados, confiabilidad y facilidad de agregarles complejidad, impuso la estandarización de los CIs en lugar de diseños utilizando transistores que pronto dejaron obsoletas a las válvulas o tubos de vacío. Existen dos ventajas principales de los CIs sobre los circuitos convencionales: coste y rendimiento. El bajo coste es debido a que los chips, con todos sus componentes, son impresos como una sola pieza por fotolitografía y no construidos por transistores de a uno por vez.
TOMADO DE:

No hay comentarios: